缅北禁地

Fernandez, Marvin Jose F. » Research » Scholarly articles

Title Unlocking the Luminescent Potential of Fish-Scale-Derived Carbon Nanoparticles for Multicolor Conversion
Authors Abdulla II, Najeeb S., Marvin Jose F. Fernandez, Bakhytzhan Baptayev, and Mannix P. Balanay
Publication date 2024/10/11
Journal International Journal of Molecular Sciences
Volume 25
Issue 20
Pages 10929
Publisher MDPI
Abstract This study introduces a novel approach to addressing environmental issues by developing fish-scale carbon nanoparticles (FSCNPs) with a wide range of colors from discarded fish scales. The process involves hydrothermally synthesizing raw tamban (Sardinella) fish scales sourced from Universal Canning, Inc. in Zamboanga City, Philippines. The optimization of the synthesis was achieved using the response surface methodology with a Box鈥揃ehnken design. The resulting FSCNPs exhibited unique structural and chemical properties akin to carbonized polymer dots, enhancing their versatility. The solid-state fluorescence of these nanoparticles can be modulated by varying their concentration in a polyvinylpyrrolidone matrix, yielding colors such as blue, green, yellow, and red-orange with Commission Internationale de l鈥橢clairage coordinates of (0.23, 0.38), (0.32, 0.43), (0.37, 0.43), and (0.46, 0.48), respectively. An analysis of the luminescence mechanism highlights cross-linking emissions, aggregation-induced emissions, and non-covalent interactions, which contribute to concentration-dependent fluorescence and tunable emission colors. These optical characteristics suggest that FSCNPs have significant potential for diverse applications, particularly in opto-electronic devices.
Index terms / Keywords response surface methodology; Box鈥揃ehnken design; hydrothermal synthesis; tamban; Sardinella; solid-state fluorescence; circular economy
DOI
URL
Back Top